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ABSTRACT

Cutler, E.M.; Albert, M.R., and White, K.D., 2019. A low-cost shoreline dynamic simulation model for proposed beach
nourishment and dune construction: Introducing a new feasibility analysis tool. Journal of Coastal Research, 35(4), 907–
919. Coconut Creek (Florida), ISSN 0749-0208.

Beach nourishment and dune construction are common coastal risk-management strategies for shoreline erosion in the
United States. Federal involvement with such projects relies on cost–benefit analyses, which in turn rely on life-cycle
models of shoreline processes, such as the Army Corps of Engineers’ Beach-fx event-driven physical and economic coastal
model. However, use of these models can be computationally and data intensive. Costs associated with conducting a
feasibility analysis for beach nourishment and dune construction may leave a community with few resources to explore
other risk-management options. This paper, therefore, presents a first-order, screening-level, low-cost dynamic model
that delivers results approximately comparable with those from life-cycle models. Applying the model to three locations
in Florida shows that simulated nourishment intervals are within 5 years of those predicted by Beach-fx, leading to a
similar number of nourishments over a 50-year project life span. A discussion on how one could apply the model to other
areas is also included. It is intended that this model could serve as a first-pass screening tool for communities considering
beach nourishment and dune construction before they decide to invest in the more thorough, but costly and data-
intensive, life-cycle model simulations.

ADDITIONAL INDEX WORDS: Shoreline erosion, coastal risk management, sea-level rise, Beach-fx, climate change,
adaptation.

INTRODUCTION
Coastal areas are vulnerable to hazards such as flooding,

inundation, and shoreline erosion that are predicted to worsen

with climate change, sea-level rise (SLR), and further coastal

development (Kron, 2013; Maloney and Preston, 2014; Wong et

al., 2014). Therefore, effective coastal storm risk management

is becoming increasingly important for coastal communities.

One common coastal risk-reduction strategy in the United

States is beach nourishment, which consists of adding sand to

widen beaches and construct dunes that can counteract

shoreline erosion and absorb wave energy to reduce flood

damages (National Research Council, 2014; USACE, 2008a).

As a traditional strategy for reducing coastal hazards due to

tides, waves, and SLR, beach nourishment often receives

federal support.

Despite the effectiveness of beach nourishment and dune

construction to mitigate coastal storm and SLR impacts, it is

not a silver bullet for addressing erosion, nor is there any single

hazard mitigation strategy appropriate for all coastal environ-

ments (USACE, 2002). Because of the dynamic nature of

coastlines, beaches erode over time, making nourishment a

temporary solution, and material must be regularly replaced

on the beach (Landry, 2011; USACE, 2008b). As a result, beach

nourishment projects require periodic input of funding and

sand, both of which may be limited resources (Landry, 2011;

National Research Council, 2014). Additionally, Armstrong et

al. (2016) observed the signal of a positive feedback between

coastal development and beach nourishment in Florida and

argue that this relationship may be the result of a systemic

mechanism. The possibility of a persistent positive feedback

implies that beach nourishment as a coastal risk-mitigation

strategy could rebound or even backfire by incentivizing

increased coastal development and that nourishing now could

raise demand for nourishment in the future (Armstrong et al.,

2016). Furthermore, beach nourishment reduces damages for

the open coast but does not address back-bay flooding in the

low-lying areas behind barrier islands, which are becoming

increasingly vulnerable to SLR impacts (National Research

Council, 2014). Thus, beach nourishment may have undesir-

able effects in some contexts at some timescales.
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Some federally supported beach nourishment projects are

analyzed using Beach-fx, a life-cycle, event-driven coastal

simulation model created and maintained by the U.S. Army

Corps of Engineers (USACE) Engineer Research and Devel-

opment Center’s Coastal and Hydraulics Laboratory and the

U.S. Army Engineer Institute for Water Resources (Gravens,

Males, and Moser, 2007). Beach-fx is a comprehensive

physical and economic model that predicts spatially resolved

shoreline and economic changes due to inundation, wave

attack, and erosion. The model is designed to evaluate life-

cycle, event-based project costs and performance for coastal

storm risk management (Gravens, Males, and Moser, 2007).

However, there are some operational challenges to applying

this model. Among these is the data-intensive nature of

Beach-fx and similar event-driven life-cycle models, which

can drive the cost of modeling to hundreds of thousands of

dollars for just the feasibility analysis of beach nourishment

projects. This potentially leaves communities with few

resources to explore other coastal risk-management options

that could be effective. As a result, a low-cost modeling

alternative able to serve as a screening-level assessment of

beach nourishment projects could help communities decide

whether they want to pursue the more-detailed event-driven

life-cycle modeling studies. The lower-cost simple model

must be able to simulate shoreline response to sea-level

change, storms, and nourishment activity with minimal

computational and data requirements and should reproduce

Beach-fx or similar life-cycle model output with reasonable

accuracy.

After providing a short description of Beach-fx, this paper

presents a stochastic dynamic model that simulates shoreline

response to long-term SLR and storm impacts and that could

serve as a simple, screening-level model. The focus is on

replicating the nourishment interval (the amount of time that

passes between subsequent nourishment episodes) as predict-

ed by Beach-fx and similar life-cycle approaches. Nourishment

interval is chosen as the model output of interest because

nourishment frequency is one of the main factors that affects

the costs of multidecadal nourishment projects. The model is

applied to three locations in Florida, two on the Atlantic coast

and one on the Gulf of Mexico, and model output is compared

with the nourishment interval as predicted by Beach-fx. A

sensitivity analysis for model parameters is conducted and

possible data sources and techniques for applying the model in

other locations are discussed.

This simpler model could serve as a tool for communities to

examine the nourishment intervals that may be necessary to

maintain a given level of damage reduction. This model is not

designed to replace Beach-fx or similar models because the

level of detail provided by life-cycle models is critical for

making the final decision to pursue large-scale nourishment

projects. The intent is, rather, for a simple model that can

provide communities with more information before they

decide to invest in higher-cost, but more thorough, simula-

tions. For example, on the basis of the results of the simple

model, some communities may choose to also consider

strategies other than beach renourishment for their adapta-

tion planning.

Short Description of Beach-fx
In Beach-fx, a study location is divided into a set of model

reaches, which are segments of beach with relatively uniform

dimensions. For each reach, an idealized profile is developed on

the basis of observations of current conditions (Gravens, Males,

and Moser, 2007). Economic damages due to gradual processes

and storm impacts are calculated on the basis of estimated

damages to residences, development, and infrastructure

subject to erosion, flooding, and waves. The model is calibrated

using historic shoreline change rates, and storms are assumed

to follow the historic distribution (Gravens, Males, and Moser,

2007). These damages are mitigated by the oceanfront dune

and berm, of which height and width are important character-

istics (Gravens, Males, and Moser, 2007; USACE Jacksonville

District, 2017a,b,c). Users can simulate damages under

different nourishment schemes, including a ‘‘no action’’

alternative. To test the effectiveness of a plan, users must

specify a dune and berm construction template and thresholds

for dune width, dune height, and berm width that trigger

nourishment. Together, these specifications affect the frequen-

cy of nourishment and quantity of sand necessary to maintain

the desired level of risk reduction (Gravens, Males, and Moser,

2007; USACE Jacksonville District, 2017a,b,c).

Output from Beach-fx includes average nourishment inter-

val, sand volume requirements, nourishment costs, and

economic damages for each nourishment alternative simulated

(Gravens, Males, and Moser, 2007). The model conducts a cost–

benefit analysis, comparing nourishment costs and damages

avoided relative to a no-action alternative. From this analysis,

Beach-fx generates a recommended plan, on the basis of

national economic development, that consists of a nourishment

template and distance triggers (Council on Environmental

Quality, 2013; Gravens, Males, and Moser, 2007; U.S. Water

Resources Council, 1983; USACE Jacksonville District,

2017a,b,c).

The recommended plan must be tested for robustness to sea-

level change (USACE, 2013, 2014). Precise projections of SLR

are notoriously difficult because of unknown future greenhouse

gas emissions and limited understanding of ice sheet dynamics

(de Winter et al., 2017; Jevrejeva et al., 2016; Ritz et al., 2015).

Deep uncertainty regarding the rate and magnitude of future

SLR has motivated coastal managers to consider a range of

plausible scenarios when planning for climate change impacts

(Hall et al., 2016). Using this strategy, USACE uses Beach-fx to

simulate net benefits and the benefit-to-cost ratio for the

recommended plan under three SLR scenarios (USACE

Jacksonville District, 2017a,b,c, USACE 2013, 2014).

The effects of SLR are included in Beach-fx through the

Bruun Rule, which assumes that shorelines recede to maintain

an equilibrium profile as sea level rises (Bruun, 1962). The

Bruun Rule is a simple equation that relates shoreline

recession to SLR and has been widely used in the scientific

literature, despite criticism that it is inaccurate and neglects

key processes such as longshore, landward, and aeolian

sediment transport (Cooper and Pilkey, 2004; Houston and

Dean, 2014; Passeri, Hagent, and Irish, 2014). Studies that

modify the Bruun Rule to include additional terms for

shoreward sediment transport can better predict shoreline
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movement (Dean and Houston, 2016; Rosati, Dean, and

Walton, 2013)

Modeling coastal morphology with Beach-fx requires data

inputs for the study location, including historic shoreline

position, projected shoreline change in response to each

nourishment strategy simulated, and a shore response data-

base (SRD), which includes shoreline changes for all combina-

tions of anticipated beach profiles and storm events (Gravens,

Males, and Moser, 2007). Nourishment-induced shoreline

change can be predicted using physical process models that

require data such as observations of wave conditions, beach

profiles, and local bathymetry. Typically, the SRD is created

using SBEACH, a numerical model that takes as input beach

profile measurements, sediment grain size, and storm condi-

tions, including wave height, wave period, and water elevation

(Rosati et al., 1993). Thus, Beach-fx simulations require

extensive geophysical, hydrologic, and hydraulic data and

modeling.

METHODS
After presenting the basic structure of the dynamic simula-

tion model, methods for calibrating the model and comparing

output with Beach-fx are described. Finally, a sensitivity

analysis is conducted on model parameters.

Model Structure
The model assumes a straight, homogeneous coastline,

typical of the reaches used in more detailed models. The entire

cross-shore width of beach is subject to linear erosion, and the

nourished portion of beach width erodes exponentially with

time since the last nourishment episode. The following state

equation for beach width, x, subject to gradual erosion comes

from previous geoeconomic shoreline modeling studies (Gopa-

lakrishnan et al., 2011; McNamara et al., 2015; Smith et al.,

2009):

dx

dt
¼ �x̂he�hs � c ð1Þ

where, l is the nourished portion of the beach, x̂ is the width of

the nourished beach, h is the exponential erosion rate of the

nourished portion of the beach, s is years since last nourish-

ment, and c is the background linear erosion rate.

To capture the effects of SLR on erosion, the background

erosion rate, c, is allowed to vary with time in proportion to

SLR, according to the Bruun Rule. Following Rosati, Dean, and

Walton (2013) and Dean and Houston (2016), an additive

correction term for landward sediment transport and sand

sources and sinks elsewhere along the coast is included. That

is:

ct ¼ rDSt �H ð2Þ

where, ct is linear erosion in year t, r is the slope of the active

profile, DSt is the change in relative sea level, S, from year t�1

to year t, and H is the correction term, assumed to be constant

with time. The Bruun Rule has been criticized in the literature,

with some researchers calling for it to be abandoned entirely

(Cooper and Pilkey, 2004). Its use here is justified on the basis

that this model is not intended to predict shoreline behavior

with high accuracy, but rather to approximate output from life-

cycle models such as Beach-fx, which relies upon the Bruun

Rule to capture SLR effects.

A stochastic term is used to represent storm-induced erosion,

assuming that the occurrence of storms is Poisson distributed

with rate parameter k. Thus the probability of n storms in year

t can be expressed as:

P ntð Þ ¼ e�k knt

nt!
ð3Þ

Shoreline change that results from a given storm follows a

generalized extreme value (GEV) distribution and storm-

induced erosion, E, in year t is modeled as:

Et ¼
1

10

Xnt

i¼1

M

i
ð4Þ

where, nt is the number of storms in year t, M ~ GEV(k, r, m),

with k, r, and m the shape, scale, and location parameters for

the GEV distribution, respectively, and the factor of 1/10

represents the fact that approximately 90% of storm-induced

erosion in the study area recovers within a few weeks (USACE

Jacksonville District, 2017a,b,c). Dividing by i accounts for

observations that subsequent storms that strike a location in a

single year have a smaller-than-expected impact on shoreline

change, presumably because much of the easily erodible

material has already been removed as a result of previous

storm(s) (Sallenger et al., 2006). It is helpful to note here that

the effect on model output of dividing by i will be minimal

because even when assuming an unrealistically high storm

frequency parameter of k ¼ 0.5 y�1, the probability that there

will be more than one storm in a given year, according to

Equation (3), is less than 0.1.

Finally, it is assumed here that implementation of beach

renourishment begins to occur once the beach erodes to a width

narrower than some critical width xcrit, and the beach is

nourished the year after this critical width is reached. Thus,

combining Equations (1–4), and discretizing to annual time

steps gives the following difference equation for beach width:

Dxt ¼
�x̂he�hs � rDSt þH � 1

10

Pnt

i¼1

M
i if xt�1 � xcrit

x̂� xt if xt�1 , xcrit

8<
: ð5Þ

Model Application
The ability for the above model structure to reproduce Beach-

fx output is demonstrated by calibrating the model for three

Florida locations: Vilano Beach (VB) and Hutchinson Island

(HI) on the Atlantic Coast and Gasparilla Island (GI) on the

Gulf Coast (Figures 1 and 2). These three locations were

selected as communities that have worked with USACE

Jacksonville District within the past 3 years to evaluate beach

nourishment projects using Beach-fx. The complete coastal

storm risk-management reports with all model input and

output are available from the USACE Jacksonville District at

http://www.saj.usace.army.mil/About/Divisions-Offices/

Planning/Environmental-Branch/Environmental-Documents/.

The USACE reports for HI and VB are both feasibility analyses

for new projects, whereas the report for GI is a re-evaluation of

an ongoing project (USACE Jacksonville District, 2017a,b,c).
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The measurements and observations that served as input for

Beach-fx are used to set parameter values, enabling compar-

ison of the average nourishment interval as computed by both

models. The dune is excluded from beach width measurements,

and therefore the model considers only berm width. This

simplification is justified on the grounds that the plans

recommended by USACE for all of the selected study sites do

not include extension of the dune profile. Additionally, previous

studies have defined beach width as the distance from the high-

tide line to the base of the dune (Gopalakrishnan et al., 2011).

The nourished beach width and trigger for nourishment are

taken from the recommended plans according to the USACE

reports for each study location. For HI and VB, nourished

beach width, x̂, is set equal to the nourished berm width,

whereas xcrit is set equal to the product of the nourished berm

width and the berm width distance trigger, as it is in Beach-fx.

These beach dimensions are assumed to be constant within

each study site (USACE Jacksonville District, 2017a,b). For GI,

the recommended plan consists of a berm extension relative to

the current project baseline. The current baseline and berm

distance trigger vary by model reach. Thus xcrit is taken to be

the average, over all model reaches, of the product of the berm

extension and the berm distance trigger. The nourished beach

width parameter, x̂, is calculated as the average over all model

reaches of the recommended nourishment template, which is

equal to the sum of the original authorized berm width and the

60-foot berm extension (USACE Jacksonville District, 2017c).

At all sites, the parameter l, which is the proportion of beach

width nourished, is calculated as x̂�xcrit

x̂ .

SLR scenarios are the same as those used by USACE,

calculated according to Engineer Regulation 1100-2-8162 and

Engineering Technical Letter 1100-2-1 (USACE, 2013, 2014).

This gives the following equation for relative sea level:

St ¼ atþ b t2 þ 2t Ti � 1992½ �
� �

ð6Þ

where, t is years since the start of the simulation, St is local sea

level relative to the start of the simulation, Ti is the start year

for the simulation, a is a site-specific parameter equal to the

historic rate of sea-level change, accounting for eustatic and

local effects, and b is the predicted acceleration in SLR. To

account for uncertainty in future SLR, three values of b are

considered, producing low-, intermediate-, and high-SLR

scenarios (USACE Jacksonville District, 2017a,b,c, USACE,

2013, 2014).

Determining shoreline response to sea-level change, accord-

ing to a modified Bruun Rule, requires values for r, the slope of

the active profile, and H, the constant additive correction term.

The USACE reports include measurements of the width and

height of the active profiles, which are used to calculate r

(USACE Jacksonville District, 2017a,b,c). These reports also

provide observed historic shoreline change rates, which are

used to obtain the average shoreline change rate Dx. For each

study site, the observed long-term shoreline change rate used

to calibrate Beach-fx is averaged over all model reaches. The

years included in the long-term average are 1972–2015 for VB,

1970–2008 for HI, and 1979–2006 for GI. For HI, the model is

also run using the pre-2004 shoreline change rate to exclude

the unusually severe erosion that occurred in this location

during the 2004 hurricane season (USACE Jacksonville

District, 2017a,b,c). From this, assuming that the long-term

erosion rate is equal to the linear background erosion rate,

given the observed historic SLR rate a, H is calculated

according to:

H ¼ Dxþ ra ð7Þ

The initial beach width, x0, at VB and HI is taken to be the

berm width for the existing/future without-project conditions

(USACE Jacksonville District, 2017a,b). At GI, the average

berm width from observed 2016 profiles is used, which, unlike

the without-project conditions, includes the nourishment that

occurred in 2013 as part of the initial authorized project

(USACE Jacksonville District, 2017c).

The storm frequency parameter k is the historical annual

average number of hurricanes and tropical storms to pass

within a 50-mile radius of the study location given in the

USACE reports (USACE Jacksonville District, 2017a,b,c). The

shoreline response to hurricanes is calculated using a GEV

distribution. Parameters for this distribution are fit to

observations of shoreline changes after Hurricanes Charley,

Frances, Ivan, and Jeanne, all of which made landfall in

Florida in 2004 (Sallenger et al., 2006). For each storm,

Sallenger et al. (2006) provide the mean shoreline position

change immediately after the storm. With only four data

points, a maximum likelihood estimation does not converge.

Thus, recognizing that the data are severely limited, the mean

(6.223 m), median (2.795 m), and variance (91.43 m2) of the four

averages are determined, and shape, scale, and location

Figure 1. Map showing the three Florida study sites: Vilano Beach (VB),

Hutchinson Island (HI), and Gasparilla Island (GI). Image produced using

Google Earth Pro (Google, 2018). (Color for this figure is available in the

online version of this paper.)

Figure 2. Photos of the three study sites. Images courtesy of USACE

(USACE Jacksonville District, 2017a,b,c). (Color for this figure is available in

the online version of this paper.)
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parameters for a GEV distribution with similar mean, median,

and variance are found. This is done using the lsqnonlin()

function from the Matlab optimization toolbox, which solves

nonlinear least-squares curve-fitting problems. Lacking addi-

tional data, it is assumed that these parameters are the same

for all locations. The impact of this assumption is tested using a

global sensitivity analysis (see below).

Finally, the start year, Ti, and end year, Tf, for each location

are taken directly from the USACE studies, and following

Smith et al. (2009) and Gopalakrishnan et al. (2011), h¼ 0.1.

All parameter values for the three study locations are given in

Table 1. Using these parameter values, the model is run 1000

times for each location and SLR scenario, and the nourish-

ment interval, after the first nourishing event, is compared

with the nourishment interval reported by USACE. Note that,

given the parameter values used for GI, it is possible that, for

some model runs, the nourishment interval will be long

enough, relative to the simulation run time, that only one

nourishment event occurs before the end of the simulation.

Any model runs in which this is the case are excluded from

further analysis, as they do not contain information regarding

the time between successive nourishment events, which is the

model output of interest. Given that this occurs in fewer than

1% of model runs, this exclusion is not expected to appreciably

change the results. Over a 50-year simulation, this is not an

issue for VB or HI.

Sensitivity Analysis
A sensitivity analysis is conducted to determine which

parameters, if changed, have the largest effect on predicted

nourishment interval. Assuming that there is a range of

plausible values for each parameter, there is a corresponding

range of possible model outputs (i.e. mean nourishment

intervals). There is, thus, a multidimensional parameter space,

consisting of all plausible parameter values, and the goal of the

sensitivity analysis is to determine which parameters, if fixed

at a single value, would lead to the largest reduction in the

variance of possible nourishment intervals (Saltelli et al., 2008).

The following parameters are included as inputs for the

sensitivity analysis: x̂, xcrit, H, h, r, k, k, r, and m. This results in

a nine-dimensional parameter space in which each of the input

parameters is allowed to vary from 80 to 120% of the estimated

value. At HI and VB, xcrit is estimated to be 0 m, so instead of

allowing this parameter at these locations to vary from 80 to

120% of 0, its minimum is set to 0 and its maximum is taken to

be 0.4 x̂�, where x̂� is the original estimate for x̂, the nourished

beach width.

A Monte Carlo simulation, in which a point in this parameter

space is randomly selected and the model run 1000 times to

estimate the mean nourishment interval for this combination

of parameters, is used to find the distribution of possible mean

nourishment intervals. Model runs in which the nourishment

interval is too long for a second nourishment event to occur

before the end of the simulation are excluded from further

analysis. The expected number of model runs excluded for each

location and SLR scenario is reported below. The stopping

criteria for the Monte Carlo simulation are taken to be when an

additional 500 parameter combinations change the total

variance of possible nourishment intervals by less than 0.005

y2 and the mean by less than 0.01 y. At this point, it is assumed

that the parameter space for a given location and SLR scenario

has been sufficiently sampled.

To determine sensitivity to the ith input parameter Pi, the

conditional variance of the expected nourishment interval given

a small range of values for Pi is calculated. As an example,

suppose Pi has a minimum possible value vmin and maximum

possible value vmax. The mean nourishment interval, as

predicted by the Monte Carlo simulation, is calculated given a

‘‘slice’’ of values of Pi, that is, all outputs for vj � Pi , vjþ1 are

considered. The vj are defined such that v0¼ vmin and there are

Table 1. Estimated parameter values used to calculate mean nourishment intervals.

Parameter Parameter Description

Vilano

Beach

Hutchinson

Island

Gasparilla

Island

x̂ (m) Nourished beach width 18.3 6.10 74.0

xcrit (m) Beach width, triggering nourishment 0 0 13.2

l Proportion of beach width that is

nourished, defined as (x̂ � xcrit)/x̂

1 1 0.821

r Slope of active profile 50.0 70.0 53.3

H (m/y) (pre-2004 value) Bruun Rule correction term �0.239 0.0857 (0.153) �0.113

a (m/y2) Historic rate of SLR 2.40 3 10�3 2.36 3 10�3 2.40 3 10�3

b (m/y2)

Low SLR acceleration 0 0 0

Mid 0.0271 3 10�3 0.0271 3 10�3 0.0271 3 10�3

High 0.113 3 10�3 0.113 3 10�3 0.113 3 10�3

x0 (m) Initial beach width 0 0 42.2

h Exponential erosion rate 0.1 0.1 0.1

k (1/y) Storm frequency 0.41 0.35 0.31

k Storm-induced erosion GEV distribution

shape parameter

0.277 0.277 0.277

r (m) Storm-induced erosion GEV distribution

scale parameter

4.24 4.24 4.24

m (m) Storm-induced erosion GEV distribution

location parameter

1.68 1.68 1.68

s0 (y) Initial time since last nourishment ‘ 15 3

Ti Initial year of simulation 2020 2020 2016

Tf Final year of simulation 2070 2070 2056
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25 data points in each interval (vj, vjþ1). The first-order

sensitivity of the nourishment interval to input parameter Pi

is defined as the variance of the mean nourishment interval over

all 25-data-point slices normalized by the total variance of the

output. See Saltelli et al. (2008) for a more thorough discussion

on this variance-based sensitivity analysis technique.

RESULTS
Tables 2–4 compare the nourishment intervals predicted

by the simple dynamic model with those predicted by Beach-

fx for each study location and SLR scenario. Note that the

nourishment interval for a single simulation is the average

time between renourishments based upon 1000 simulations.

Tables 2–4 report the mean, 90% confidence interval (CI), and

range of this average, as well as the expected number of

nourishments over a 50-year project life span. For the Monte

Carlo simulation at each location and SLR scenario, the

stopping criteria were reached after 1000–4000-parameter

combinations. For VB and HI under all SLR scenarios, 1000

model runs are used to calculate expected nourishment

interval for each parameter combination (i.e. all model runs

have at least two nourishments, so none is excluded from

analysis). For GI, with low SLR, on average, 54 runs were

excluded per parameter combination because of no second

nourishment occurring, giving an expected value of 946 runs

included in the mean interval calculation. For the interme-

diate and high scenarios, the expected value of simulations

included for each parameter combination is 1000, with no

model runs excluded. Figures 3–11 show scatter plots of the

mean nourishment interval as a function of each input

parameter. The black lines show the mean over each 25-data-

point slice of the input parameter. Sensitivity to each input

parameter, s, defined as the conditional variance of the

expected nourishment interval normalized by the total

variance, is presented in Table 5.

Vilano Beach
At VB, the dynamic model consistently overestimates the

nourishment interval by 2–3 years. It calculates expected

nourishment intervals of 13.9, 12.7, and 10.3 years for the low-,

intermediate-, and high-SLR scenarios, respectively, whereas

Beach-fx predicts 12, 10, and 7 years for the same scenarios

(USACE Jacksonville District, 2017b). Over a 50-year life, the

nourishment intervals estimated for the simpler model result

in the same number of nourishments as Beach-fx at low SLR,

one fewer nourishment at intermediate SLR, and two fewer at

the high-SLR scenario. So the simpler model could underesti-

mate costs by zero to two nourishments compared with Beach-

fx, depending on the rate of SLR (Table 2).

For all SLR scenarios, nourishment interval at VB is most

sensitive to x̂ and xcrit (s . 0.3). This implies that nourishment

interval is most strongly controlled by the user-specified

nourishment width and trigger, rather than beach or storm

characteristics. Model output is also sensitive to h, the

exponential erosion rate in the low scenario (s . 0.2).

Nourishment interval is mildly sensitive to this parameter

and r, the slope of the active profile, for the intermediate and

high scenarios and H, the Bruun Rule correction term in the

low-SLR scenario (s . 0.1) (Table 5).

Table 2. Mean nourishment interval, 90% confidence interval (CI), range, and expected number of nourishment episodes over a 50-year project life span for the

simple dynamic model (1000 iterations) and Beach-fx for Vilano Beach. In all scenarios, nourishment interval is overestimated by 2–3 years, resulting in 0–2

fewer nourishment episodes over 50 years. The USACE study did not report confidence intervals or a minimum and maximum for average nourishment

frequencies. Expected episodes per 50 years for Beach-fx are calculated here as 50 divided by the mean nourishment interval, rounded down to the nearest

whole number. Fifty-year error is the difference in number of nourishments estimated by the simpler model, rounded to the nearest whole number, and the

number of nourishments predicted by Beach-fx over 50 years. Beach-fx results are obtained from USACE Jacksonville District (2017b).

Simplified Model Beach-fx

Interval

Error (y) 50-y Error

Mean

Interval (y) 90% CI (y)

Full

Range (y)

Expected

Episodes

per 50 y

Mean

Interval (y)

Expected

Episodes

per 50 y

Low SLR 13.9 13.9–14.0 10.8–17.0 4.0 12 4 2 0

Mid SLR 12.7 12.7–12.8 10.0–14.7 4.2 10 5 3 �1

High SLR 10.3 10.3–10.3 8.6–11.3 5.1 7 7 3 �2

Table 3. Mean nourishment interval, 90% confidence interval (CI), range, and expected number of nourishment episodes over a 50-year project life span for the

simple dynamic model (1000 iterations) and Beach-fx for Hutchinson Island. Results in parentheses are calculated using the pre-2004 value for Dx.

Nourishment interval is underestimated for the low-SLR scenario and overestimated for the intermediate and high scenarios. The difference in number of

nourishments over 50 years ranges from two more than predicted by Beach-fx at low SLR, to four fewer than Beach-fx at high SLR, with roughly the same

number predicted at intermediate SLR. Excluding the impacts of the 2004 hurricane season produces slightly longer intervals. The USACE study did not

report the minimum and maximum for their average nourishment frequencies. Expected episodes per 50 years for Beach-fx are calculated here as 50 divided by

the mean nourishment interval, rounded down to the nearest whole number. Fifty-year error is the difference in number of nourishments estimated by the

simpler model, rounded to the nearest whole number, and the number of nourishments predicted by Beach-fx over 50 years. Beach-fx results are obtained from

USACE Jacksonville District (2017a).

Simplified Model Beach-fx

Interval

Error (y) 50-y Error

Mean

Interval (y) 90% CI (y) Full Range (y)

Expected

Episodes

per 50 y

Mean

Interval (y) 90% CI (y)

Expected

Episodes

per 50 y

Low SLR 12.7 (15.1) 12.6–12.8 (15.0–15.3) 8.0–19.0 (7.0–45) 4.3 (3.8) 18 17–19 2 �5 (�3) 2 (2)

Mid SLR 9.6 (10.5) 9.6–9.7 (10.4–10.5) 6.7–12.0 (6.9–14.0) 5.6 (5.3) 8 7–8 6 2 (3) 0 (�1)

High SLR 6.4 (6.6) 6.4–6.4 (6.6–6.6) 5.4–7.2 (5.4–7.5) 8.1 (8.0) 4 4–4 12 2 (2) �4 (�4)
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Hutchinson Island
As shown in Table 3, at HI, using shoreline change data from

1970 to 2008 to calculate Dx the model predicts an expected

mean nourishment of 12.7 years for the low-SLR scenario

compared with 18 years predicted by Beach-fx. For the

intermediate and high scenarios, the model predicts, respec-

tively, that nourishing would be necessary, on average, every

9.6 and 6.4 years, compared with 8 and 4 years predicted by

Beach-fx (USACE Jacksonville District, 2017a). However, 2004

was an especially severe hurricane season for this area, with

two hurricanes making landfall on HI, causing significant

beach impacts (Sallenger et al., 2006; USACE Jacksonville

District, 2017a). Therefore, the model is also run using only

shoreline change data from before the 2004 hurricane season,

as this may present conditions more representative of the

historical erosion and accretion patterns used to calibrate life-

cycle models. With this change, the low-SLR scenario nourish-

ment interval increases to 15.1 years, that for the intermediate

scenario is raised to 10.5 years, and that for the high scenario

increases slightly to 6.6 years. Thus, this modification shifts all

of the predicted intervals to be within 3 years of the Beach-fx

intervals. Over a 50-year project life, the nourishment intervals

estimated for the simpler model result in two more nourish-

ments than the Beach-fx model at the low-SLR scenario, the

same number at intermediate SLR, and four fewer at the high-

SLR scenario. Here, the simpler model is roughly the same as

Beach-fx under intermediate SLR, but could slightly overesti-

mate costs under low SLR and significantly underestimate

renourishments under a high-SLR scenario (Table 3).

The sensitivity analysis for HI reveals that the model is most

sensitive to x̂ and xcrit in all SLR scenarios (s . 0.2). Thus, as

with VB, the user-specified inputs are key for determining

nourishment interval. For the intermediate and high scenarios,

the model is also sensitive to r, the slope of the active profile (s

. 0.2). The model also shows slight sensitivity to h in the low

and intermediate scenarios and H, r, and k in the low-SLR

scenario (s . 0.1) (Table 5).

Gasparilla Island
At GI, the model consistently overestimates the nourishment

interval by 1–3 years, predicting an expected 25.1, 22.7, and

18.6 years for the low-, intermediate-, and high-SLR scenarios,

respectively, whereas Beach-fx predicts 22, 21, and 18 years for

the same scenarios (USACE Jacksonville District, 2017c). Over

a 50-year life, the nourishment intervals estimated for the

simpler model result in the same number of nourishments as

Table 4. Mean nourishment interval, 90% confidence interval (CI), range, and expected number of nourishment episodes over a 50-year project life span for the

simple dynamic model (1000 iterations) and Beach-fx for Gasparilla Island. In all scenarios, nourishment interval is overestimated by 1–3 years, but both

models predict the same number of nourishments over 50 years. The USACE study did not report confidence intervals for their nourishment frequencies.

Expected episodes per 50 years for Beach-fx are calculated here as 50 divided by the mean nourishment interval, rounded down to the nearest whole number.

Fifty-year error is the difference in number of nourishments estimated by the simpler model, rounded to the nearest whole number, and the number of

nourishments predicted by Beach-fx over 50 years. Beach-fx results are obtained from USACE Jacksonville District (2017c).

Simplified Model Beach-fx

Interval

Error (y) 50-y Error

Mean

Interval (y) 90% CI (y)

Full

Range (y)

Expected

Episodes

per 50 y

Mean

Interval (y)

Full

Range (y)

Expected

Episodes

per 50 y

Low SLR 25.1 24.9–25.2 16.0–30.0 2.0 22 15–29 2 3 0

Mid SLR 22.7 22.6–22.8 12.0–26.0 2.0 21 14–28 2 2 0

High SLR 18.6 18.6–18.7 14.0–20.0 2.0 18 10–26 2 1 0

Figure 3. Monte Carlo simulation for low-SLR scenario at VB. Mean nourishment is most sensitive to (a) x̂, (b) xcrit, and (d) h. The model is slightly sensitive to (c)

H and is relatively insensitive to all other input parameters (e–i).
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predicted by the Beach-fx model at low-, intermediate-, and

high-SLR scenarios (Table 4).

Across all scenarios, at GI, the model is most sensitive to x̂

and h (s . 0.3). Thus, at GI, nourishment interval is most

strongly determined by the amount of fill placed on the beach

during each nourishment episode and the exponential erosion

rate of the nourished portion of the beach. The model also

shows sensitivity to r in the intermediate and high scenarios (s

. 0.1).

DISCUSSION
With the exception of the low-SLR scenario at HI, the model

estimates nourishment intervals that are several years longer

than those predicted by Beach-fx. Despite this, the actual

number of nourishments over a 50-year project life is

approximately the same for low and intermediate SLR for

VB, intermediate SLR for HI, and all SLR scenarios for GI. The

simpler model predicted slightly fewer nourishments at high

SLR for VB and slightly more nourishments at low SLR for HI.

The only scenario where this model was substantially different

from Beach-fx was high SLR at HI, where it estimated 8

nourishments compared with 12 predicted by Beach-fx.

Therefore, this simple dynamic model shows promise for

estimating number of nourishments, which drives cost, and

at all locations, it has captured the effect of SLR on

nourishment interval as predicted by Beach-fx. Thus, this

low-cost, computationally fast tool with minimal data require-

ments can give communities an approximate estimate for

future renourishment costs and the potential variability in

nourishment interval due to SLR.

Figure 5. Monte Carlo simulation for high-SLR scenario at VB. Mean nourishment is most sensitive to (a) x̂ and (b) xcrit. The model is slightly sensitive to (d) h and

(e) r and is relatively insensitive to all other input parameters (c, f–i).

Figure 4. Monte Carlo simulation for intermediate-SLR scenario at VB. Mean nourishment is most sensitive to (a) x̂ and (b) xcrit. The model is slightly sensitive to

(d) h and (e) r and is relatively insensitive to all other input parameters (c, f–i).
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Predicted nourishment interval appears to be most sensitive

to x̂, xcrit, and h, with some locations and SLR scenarios showing

sensitivity to r. H and k also appear to be moderately important

in some scenarios. The dependence on x̂ and xcrit is reasonable

because, together, these user-defined parameters determine

the quantity of sand placed on the beach during each

nourishment episode. The importance of h is also not

surprising, as this exponential erosion rate controls how

quickly the nourished portion of the beach is removed.

Sensitivity to r, H, and k can be interpreted as the relative

importance of gradual SLR-induced erosion vs. storm-induced

erosion for each location and SLR scenario.

The ability for this simpler model to produce approximately

the same results as Beach-fx suggests that it is capturing the

most important dynamic processes governing shoreline behav-

ior. Although changes in beach morphology are heterogeneous

in space and time and the result of many interacting variables

(Rosati, Dean, and Walton, 2013), this model distills these

complex dynamics into the most fundamental processes.

Additionally, when possible, this model was calibrated with

the same data used for Beach-fx analyses, which undoubtedly

contributes to the closeness in output. Also, despite the

substantial structural differences, both models use the Bruun

Rule to simulate the effects of SLR and use the same SLR

scenarios. It is, therefore, not surprising that variations in

output across SLR scenarios are similar between the two

models.

It is important to stress that although the models produce

similar output for the three sites presented here, many aspects

of this model are based on statistics. Thus, it could be

Figure 7. Monte Carlo simulation for intermediate-SLR scenario at HI. Mean nourishment is most sensitive to (a) x̂, (b) xcrit, and (e) r. The model is slightly

sensitive to (d) h and relatively insensitive to all other input parameters (c, f–i).

Figure 6. Monte Carlo simulation for low-SLR scenario at HI. Mean nourishment is most sensitive to (a) x̂ and (b) xcrit. The model is moderately sensitive to (c) H,

(d) h, (e) r, and (f) k. The model is relatively insensitive to all other input parameters (g–i).
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dangerous to apply this model to beaches with an entirely

different morphology, tidal regime, or wave climate without

first verifying that the model is appropriate for such locations.

The structural differences between these models result in

dramatically different computational requirements. Beach-fx

results are generally reported as the average over 100

simulations. This full life-cycle analysis takes approximately

8 hours, and USACE therefore considers 100 simulations to be

a reasonable trade-off between achieving stable results and

time required to complete all runs (USACE Jacksonville

District, 2017a,b,c). In contrast, running the simpler model

presented here 1000 times and calculating the minimum,

maximum, and mean nourishment intervals with a 90% CI

takes approximately 1 second on a 2014 MacBook Pro.

Using the Tool
The model presented here is available as open-source code

from the shoreline-dynamics GitHub repository available at

https://github.com/emcutler/shoreline-dynamics. A community

interested in using this tool would need to specify xcrit and x̂,

which together determine the level of risk reduction a project

imparts. To select xcrit and x̂, a community could rely on historic

beach profiles pre- and postnourishment at or near their

location. If profile data are not available, the Program for the

Study of Developed Shorelines (PSDS) at Western Carolina

University maintains a comprehensive database of beach

nourishment projects undertaken since 1923 in the United

States (Program for the Study of Developed Shorelines at

Western Carolina University, 2019). This database provides

Figure 9. Monte Carlo simulation for low-SLR scenario at GI. Mean nourishment is most sensitive to (a) x̂ and (d) h. The model is relatively insensitive to all other

input parameters (b, c, e–i).

Figure 8. Monte Carlo simulation for high-SLR scenario at HI. Mean nourishment interval is most sensitive to (a) x̂, (b) xcrit, and (e) r The model is relatively

insensitive to all other input parameters (b, c, f–i).
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nourishment length and volume, which could be used to

estimate width, assuming an appropriate value for the height

of the construction template. From this, users could model their

choices of xcrit and x̂ after what similar communities have done

in the past. Because of the high sensitivity of model output to x̂

and xcrit, users may wish to test the model for several

combinations of x̂ and xcrit and use the product of the

nourishment interval and x̂� xcrit to estimate relative costs of

nourishment. The PSDS database could also help communities

determine an appropriate value of s0 on the basis of the last

time the beach of interest was nourished (if ever).

SLR scenarios are available from the Climate Preparedness

and Resilience program of USACE (USACE, 2017). The active

profile slope, r, can be inferred from beach profile data or

nearby beaches. Historic average shoreline change rate data

may be available from previous studies, such as USACE

feasibility analyses. Also, some state and local agencies

maintain records of shoreline position. For example, the

Florida Department of Environmental Protection maintains a

database with historic beach profile and shoreline position data

(Florida Department of Environmental Protection, 2018). If

that is not available for the area of interest, the U.S. Geological

Survey (USGS) Coastal Change Hazards Portal has long- and

short-term shoreline change rates and historic shoreline

positions for most of the continental United States and parts

of Alaska and Hawaii (Kratzmann, Himmelstoss, and Thieler,

2017). Using the historic shoreline change rate, rate of SLR,

and active profile slope, the Bruun Rule correction term, H, can

be calculated according to Equation (7).

Figure 11. Monte Carlo simulation for high-SLR scenario at GI. Mean nourishment is most sensitive to (a) x̂ and (d) h. The model is also moderately sensitive (e) r.

The model is relatively insensitive to all other input parameters (b, c, f–i).

Figure 10. Monte Carlo simulation for intermediate-SLR scenario at GI. Mean nourishment is most sensitive to (a) x̂ and (d) h. The model is also moderately

sensitive (e) r. The model is relatively insensitive to all other input parameters (b, c, f–i).
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Using data from the National Hurricane Center, the Coastal

Services Center at the National Oceanic and Atmospheric

Administration maintains a database of historic tropical

storms and hurricanes that can be used to calculate the

expected number of storms per year (1/k) to pass within 50

miles of the desired study area (National Oceanic and

Atmospheric Administration, 2017). Shoreline response to

storms may be available from previous studies focusing on

the area of interest or from the USGS Coastal Change Hazards

Portal (Kratzmann, Himmelstoss, and Thieler, 2017). Alterna-

tively, the sensitivity analysis revealed that the model is

minimally sensitive to the GEV parameters (Table 5), and thus,

it may be acceptable for communities to use the values of k, r,

and m given in Table 1.

Gopalakrishnan et al. (2011) and Smith et al. (2009) set h¼
0.1 for a generic North Carolina beach. Lacking better data, the

same value was used for the three Florida locations and

produced acceptable results. However, the sensitivity analysis

revealed that the model is sensitive to changes in this

parameter, particularly at GI for all SLR scenarios and at VB

for the low-SLR scenario. Thus, although communities could

use h¼0.1, as has been done here, it may be beneficial to invest

in studies to measure the exponential erosion rate of nourished

beaches.

Finally, communities must select Ti and Tf according to the

time frame over which they wish to predict nourishment

intervals. Having determined appropriate parameter values, a

community could then use the model presented here to

estimate the necessary nourishment frequency under low,

medium, and high SLR, to maintain a desired beach width.

Future Work
This paper has shown that a simple model can approximate

the number of renourishments predicted by Beach-fx for three

Florida locations. Future work could include verifying the

model for other coastal locations. Additionally, as explained

above, model application relied upon the representative value

of 0.1 for h, which is not supported by data. Thus, this model

could potentially be improved by incorporating measurements

of the exponential erosion rate of nourished beaches. Addition-

ally, future research could investigate the validity of model

assumptions, such as 90% of storm damage recovering within

several weeks and a constant Bruun Rule correction term,

under the different SLR scenarios.

CONCLUSION
This paper presents a low-cost stochastic dynamic model that

simulates the beach nourishment interval, which largely

determines renourishment costs over the life of a project. The

model is applied to three locations in Florida, and a sensitivity

analysis identified input parameters that have the largest

effect on model output. Results indicate that this simple

dynamic model requiring minimal data inputs can reasonably

well approximate the renourishment costs on the basis of the

intervals predicted by Beach-fx. This model is not intended to

replace Beach-fx simulations but rather to serve as a first-pass

screening process. This could help communities decide whether

they wish to proceed with the more money-, time-, and data-

intensive life-cycle simulations or if they would prefer to

explore other coastal risk-management options.
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